Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions
نویسندگان
چکیده
Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging economies. Modeling potential distributions of invasive weeds can prioritize locations for monitoring and control efforts, increasing management efficiency. Forecasts of invasion risk at regional to continental scales are enabled by readily available downscaled climate surfaces together with an increasing number of digitized and georeferenced species occurrence records and species distribution modeling techniques. However, predictions at a finer scale and in landscapes with less topographic variation may require predictors that capture biotic processes and local abiotic conditions. Contemporary remote sensing (RS) data can enhance predictions by providing a range of spatial environmental data products at fine scale beyond climatic variables only. In this study, we used the Global Biodiversity Information Facility (GBIF) and empirical maximum entropy (MaxEnt) models to model the potential distributions of 14 invasive plant species across Southeast Asia (SEA), selected from regional and Vietnam's lists of priority weeds. Spatial environmental variables used to map invasion risk included bioclimatic layers and recent representations of global land cover, vegetation productivity (GPP), and soil properties developed from Earth observation data. Results showed that combining climate and RS data reduced predicted areas of suitable habitat compared with models using climate or RS data only, with no loss in model accuracy. However, contributions of RS variables were relatively limited, in part due to uncertainties in the land cover data. We strongly encourage greater adoption of quantitative remotely sensed estimates of ecosystem structure and function for habitat suitability modeling. Through comprehensive maps of overall predicted area and diversity of invasive species, we found that among lifeforms (herb, shrub, and vine), shrub species have higher potential invasion risk in SEA. Native invasive species, which are often overlooked in weed risk assessment, may be as serious a problem as non-native invasive species. Awareness of invasive weeds and their environmental impacts is still nascent in SEA and information is scarce. Freely available global spatial datasets, not least those provided by Earth observation programs, and the results of studies such as this one provide critical information that enables strategic management of environmental threats such as invasive species.
منابع مشابه
A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملCoastal water quality assessment based on the remotely sensed water quality index using time series of satellite images
This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavymetals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...
متن کاملPredicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models
Bee keeping is indispensable to global food production. It is an alternate income source, especially in rural underdeveloped African settlements, and an important forest conservation incentive. However, dwindling honeybee colonies around the world are attributed to pests and diseases whose spatial distribution and influences are not well established. In this study, we used remotely sensed data ...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملA model-based approach for mapping rangelands covers using Landsat TM image data
Empirical models are important tools for relating field-measured biophysical variables to remotely sensed data. Regression analysis has been a popular empirical method of linking these two types of data to estimate variables such as biomass, percent vegetation canopy cover, and bare soil. This study was conducted in a semi-arid rangeland ecosystem of Qazvin province, Iran. This paper presents t...
متن کامل